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Editor’s foreword

E. T. Jaynes died April 30, 1998. Before his death he asked me to finish and publish his
book on probability theory. I struggled with this for some time, because there is no doubt in
my mind that Jaynes wanted this book finished. Unfortunately, most of the later chapters,
Jaynes’ intended volume 2 on applications, were either missing or incomplete, and some
of the early chapters also had missing pieces. I could have written these latter chapters and
filled in the missing pieces, but if I did so, the work would no longer be Jaynes’; rather, it
would be a Jaynes–Bretthorst hybrid with no way to tell which material came from which
author. In the end, I decided the missing chapters would have to stay missing – the work
would remain Jaynes’.

There were a number of missing pieces of varying length that Jaynes had marked by
inserting the phrase ‘much more coming’. I could have left these comments in the
text, but they were ugly and they made the book look very incomplete. Jaynes intended
this book to serve as both a reference and a text book. Consequently, there are question
boxes (Exercises) scattered throughout most chapters. In the end, I decided to replace the
‘much more coming’ comments by introducing ‘Editor’s’ Exercises. If you answer these
questions, you will have filled in the missing material.

Jaynes wanted to include a series of computer programs that implemented some of the
calculations in the book. I had originally intended to include these programs. But, as time
went on, it became increasingly obvious that many of the programs were not available, and
the ones that were were written in a particularly obscure form of basic (it was the programs
that were obscure, not the basic). Consequently, I removed the references to these programs
and, where necessary, inserted a few sentences to direct people to the necessary software
tools to implement the calculations.

Numerous references were missing and had to be supplied. Usually the information
available, a last name and date, was sufficient to find one or more probable references. When
there were several good candidates, and I was unable to determine which Jaynes intended, I
included multiple references and modified the citation. Sometimes the information was so
vague that no good candidates were available. Fortunately, I was able to remove the citation
with no detrimental effect. To enable readers to distinguish between cited works and other
published sources, Jaynes’ original annotated bibliography has been split into two sections:
a Reference list and a Bibliography.

xvii
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xviii Editor’s foreword

Finally, while I am the most obvious person who has worked on getting this book into
publication, I am not the only person to do so. Some of Jaynes’ closest friends have assisted
me in completing this work. These include Tom Grandy, Ray Smith, Tom Loredo, Myron
Tribus and John Skilling, and I would like to thank them for their assistance. I would also
like to thank Joe Ackerman for allowing me to take the time necessary to get this work
published.

G. Larry Bretthorst
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Preface

The following material is addressed to readers who are already familiar with applied math-
ematics, at the advanced undergraduate level or preferably higher, and with some field,
such as physics, chemistry, biology, geology, medicine, economics, sociology, engineering,
operations research, etc., where inference is needed.1 A previous acquaintance with proba-
bility and statistics is not necessary; indeed, a certain amount of innocence in this area may
be desirable, because there will be less to unlearn.

We are concerned with probability theory and all of its conventional mathematics, but
now viewed in a wider context than that of the standard textbooks. Every chapter after the
first has ‘new’ (i.e. not previously published) results that we think will be found interesting
and useful. Many of our applications lie outside the scope of conventional probability
theory as currently taught. But we think that the results will speak for themselves, and that
something like the theory expounded here will become the conventional probability theory
of the future.

History

The present form of this work is the result of an evolutionary growth over many years. My
interest in probability theory was stimulated first by reading the work of Harold Jeffreys
(1939) and realizing that his viewpoint makes all the problems of theoretical physics appear
in a very different light. But then, in quick succession, discovery of the work of R. T. Cox
(1946), Shannon (1948) and Pólya (1954) opened up new worlds of thought, whose explo-
ration has occupied my mind for some 40 years. In this much larger and permanent world
of rational thinking in general, the current problems of theoretical physics appeared as only
details of temporary interest.

The actual writing started as notes for a series of lectures given at Stanford University in
1956, expounding the then new and exciting work of George Pólya on ‘Mathematics and
Plausible Reasoning’. He dissected our intuitive ‘common sense’ into a set of elementary
qualitative desiderata and showed that mathematicians had been using them all along to

1 By ‘inference’ we mean simply: deductive reasoning whenever enough information is at hand to permit it; inductive or plausible
reasoning when – as is almost invariably the case in real problems – the necessary information is not available. But if a problem
can be solved by deductive reasoning, probability theory is not needed for it; thus our topic is the optimal processing of incomplete
information.

xix

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521592712 - Probability Theory the Logic of Science
E. T. Jaynes
Frontmatter
More information

http://www.cambridge.org/0521592712
http://www.cambridge.org
http://www.cambridge.org


xx Preface

guide the early stages of discovery, which necessarily precede the finding of a rigorous proof.
The results were much like those of James Bernoulli’s Art of Conjecture (1713), developed
analytically by Laplace in the late 18th century; but Pólya thought the resemblance to be
only qualitative.

However, Pólya demonstrated this qualitative agreement in such complete, exhaustive
detail as to suggest that there must be more to it. Fortunately, the consistency theorems of
R. T. Cox were enough to clinch matters; when one added Pólya’s qualitative conditions to
them the result was a proof that, if degrees of plausibility are represented by real numbers,
then there is a uniquely determined set of quantitative rules for conducting inference. That
is, any other rules whose results conflict with them will necessarily violate an elementary –
and nearly inescapable – desideratum of rationality or consistency.

But the final result was just the standard rules of probability theory, given already by
Daniel Bernoulli and Laplace; so why all the fuss? The important new feature was that
these rules were now seen as uniquely valid principles of logic in general, making no
reference to ‘chance’ or ‘random variables’; so their range of application is vastly greater
than had been supposed in the conventional probability theory that was developed in the
early 20th century. As a result, the imaginary distinction between ‘probability theory’ and
‘statistical inference’ disappears, and the field achieves not only logical unity and simplicity,
but far greater technical power and flexibility in applications.

In the writer’s lectures, the emphasis was therefore on the quantitative formulation of
Pólya’s viewpoint, so it could be used for general problems of scientific inference, almost
all of which arise out of incomplete information rather than ‘randomness’. Some personal
reminiscences about George Pólya and this start of the work are in Chapter 5.

Once the development of applications started, the work of Harold Jeffreys, who had
seen so much of it intuitively and seemed to anticipate every problem I would encounter,
became again the central focus of attention. My debt to him is only partially indicated by the
dedication of this book to his memory. Further comments about his work and its influence
on mine are scattered about in several chapters.

In the years 1957–1970 the lectures were repeated, with steadily increasing content, at
many other universities and research laboratories.2 In this growth it became clear gradually
that the outstanding difficulties of conventional ‘statistical inference’ are easily understood
and overcome. But the rules which now took their place were quite subtle conceptually, and
it required some deep thinking to see how to apply them correctly. Past difficulties, which
had led to rejection of Laplace’s work, were seen finally as only misapplications, arising
usually from failure to define the problem unambiguously or to appreciate the cogency of
seemingly trivial side information, and easy to correct once this is recognized. The various
relations between our ‘extended logic’ approach and the usual ‘random variable’ one appear
in almost every chapter, in many different forms.

2 Some of the material in the early chapters was issued in 1958 by the Socony-Mobil Oil Company as Number 4 in their series
‘Colloquium Lectures in Pure and Applied Science’.
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Preface xxi

Eventually, the material grew to far more than could be presented in a short series of
lectures, and the work evolved out of the pedagogical phase; with the clearing up of old
difficulties accomplished, we found ourselves in possession of a powerful tool for dealing
with new problems. Since about 1970 the accretion has continued at the same pace, but
fed instead by the research activity of the writer and his colleagues. We hope that the final
result has retained enough of its hybrid origins to be usable either as a textbook or as a
reference work; indeed, several generations of students have carried away earlier versions
of our notes, and in turn taught it to their students.

In view of the above, we repeat the sentence that Charles Darwin wrote in the Introduction
to his Origin of Species: ‘I hope that I may be excused for entering on these personal details,
as I give them to show that I have not been hasty in coming to a decision.’ But it might
be thought that work done 30 years ago would be obsolete today. Fortunately, the work
of Jeffreys, Pólya and Cox was of a fundamental, timeless character whose truth does
not change and whose importance grows with time. Their perception about the nature of
inference, which was merely curious 30 years ago, is very important in a half-dozen different
areas of science today; and it will be crucially important in all areas 100 years hence.

Foundations

From many years of experience with its applications in hundreds of real problems, our views
on the foundations of probability theory have evolved into something quite complex, which
cannot be described in any such simplistic terms as ‘pro-this’ or ‘anti-that’. For example,
our system of probability could hardly be more different from that of Kolmogorov, in style,
philosophy, and purpose. What we consider to be fully half of probability theory as it is
needed in current applications – the principles for assigning probabilities by logical analysis
of incomplete information – is not present at all in the Kolmogorov system.

Yet, when all is said and done, we find ourselves, to our own surprise, in agreement with
Kolmogorov and in disagreement with his critics, on nearly all technical issues. As noted in
Appendix A, each of his axioms turns out to be, for all practical purposes, derivable from
the Pólya–Cox desiderata of rationality and consistency. In short, we regard our system of
probability as not contradicting Kolmogorov’s; but rather seeking a deeper logical founda-
tion that permits its extension in the directions that are needed for modern applications. In
this endeavor, many problems have been solved, and those still unsolved appear where we
should naturally expect them: in breaking into new ground.

As another example, it appears at first glance to everyone that we are in very close
agreement with the de Finetti system of probability. Indeed, the writer believed this for
some time. Yet when all is said and done we find, to our own surprise, that little more than a
loose philosophical agreement remains; on many technical issues we disagree strongly with
de Finetti. It appears to us that his way of treating infinite sets has opened up a Pandora’s
box of useless and unnecessary paradoxes; nonconglomerability and finite additivity are
examples discussed in Chapter 15.
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xxii Preface

Infinite-set paradoxing has become a morbid infection that is today spreading in a way
that threatens the very life of probability theory, and it requires immediate surgical removal.
In our system, after this surgery, such paradoxes are avoided automatically; they cannot arise
from correct application of our basic rules, because those rules admit only finite sets and
infinite sets that arise as well-defined and well-behaved limits of finite sets. The paradoxing
was caused by (1) jumping directly into an infinite set without specifying any limiting
process to define its properties; and then (2) asking questions whose answers depend on
how the limit was approached.

For example, the question: ‘What is the probability that an integer is even?’ can have any
answer we please in (0, 1), depending on what limiting process is used to define the ‘set
of all integers’ (just as a conditionally convergent series can be made to converge to any
number we please, depending on the order in which we arrange the terms).

In our view, an infinite set cannot be said to possess any ‘existence’ and mathematical
properties at all – at least, in probability theory – until we have specified the limiting process
that is to generate it from a finite set. In other words, we sail under the banner of Gauss,
Kronecker, and Poincaré rather than Cantor, Hilbert, and Bourbaki. We hope that readers
who are shocked by this will study the indictment of Bourbakism by the mathematician
Morris Kline (1980), and then bear with us long enough to see the advantages of our
approach. Examples appear in almost every chapter.

Comparisons

For many years, there has been controversy over ‘frequentist’ versus ‘Bayesian’ methods
of inference, in which the writer has been an outspoken partisan on the Bayesian side. The
record of this up to 1981 is given in an earlier book (Jaynes, 1983). In these old works
there was a strong tendency, on both sides, to argue on the level of philosophy or ideology.
We can now hold ourselves somewhat aloof from this, because, thanks to recent work, there
is no longer any need to appeal to such arguments. We are now in possession of proven
theorems and masses of worked-out numerical examples. As a result, the superiority of
Bayesian methods is now a thoroughly demonstrated fact in a hundred different areas. One
can argue with a philosophy; it is not so easy to argue with a computer printout, which says
to us: ‘Independently of all your philosophy, here are the facts of actual performance.’ We
point this out in some detail whenever there is a substantial difference in the final results.
Thus we continue to argue vigorously for the Bayesian methods; but we ask the reader to
note that our arguments now proceed by citing facts rather than proclaiming a philosophical
or ideological position.

However, neither the Bayesian nor the frequentist approach is universally applicable, so
in the present, more general, work we take a broader view of things. Our theme is simply:
probability theory as extended logic. The ‘new’ perception amounts to the recognition that
the mathematical rules of probability theory are not merely rules for calculating frequencies
of ‘random variables’; they are also the unique consistent rules for conducting inference
(i.e. plausible reasoning) of any kind, and we shall apply them in full generality to that end.
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Preface xxiii

It is true that all ‘Bayesian’ calculations are included automatically as particular cases of
our rules; but so are all ‘frequentist’ calculations. Nevertheless, our basic rules are broader
than either of these, and in many applications our calculations do not fit into either category.

To explain the situation as we see it presently: The traditional ‘frequentist’ methods which
use only sampling distributions are usable and useful in many particularly simple, idealized
problems; however, they represent the most proscribed special cases of probability theory,
because they presuppose conditions (independent repetitions of a ‘random experiment’ but
no relevant prior information) that are hardly ever met in real problems. This approach is
quite inadequate for the current needs of science.

In addition, frequentist methods provide no technical means to eliminate nuisance pa-
rameters or to take prior information into account, no way even to use all the information in
the data when sufficient or ancillary statistics do not exist. Lacking the necessary theoretical
principles, they force one to ‘choose a statistic’ from intuition rather than from probability
theory, and then to invent ad hoc devices (such as unbiased estimators, confidence intervals,
tail-area significance tests) not contained in the rules of probability theory. Each of these is
usable within the small domain for which it was invented but, as Cox’s theorems guarantee,
such arbitrary devices always generate inconsistencies or absurd results when applied to
extreme cases; we shall see dozens of examples.

All of these defects are corrected by use of Bayesian methods, which are adequate for what
we might call ‘well-developed’ problems of inference. As Harold Jeffreys demonstrated,
they have a superb analytical apparatus, able to deal effortlessly with the technical problems
on which frequentist methods fail. They determine the optimal estimators and algorithms
automatically, while taking into account prior information and making proper allowance
for nuisance parameters, and, being exact, they do not break down – but continue to yield
reasonable results – in extreme cases. Therefore they enable us to solve problems of far
greater complexity than can be discussed at all in frequentist terms. One of our main purposes
is to show how all this capability was contained already in the simple product and sum rules
of probability theory interpreted as extended logic, with no need for – indeed, no room for –
any ad hoc devices.

Before Bayesian methods can be used, a problem must be developed beyond the
‘exploratory phase’ to the point where it has enough structure to determine all the needed
apparatus (a model, sample space, hypothesis space, prior probabilities, sampling distribu-
tion). Almost all scientific problems pass through an initial exploratory phase in which we
have need for inference, but the frequentist assumptions are invalid and the Bayesian appa-
ratus is not yet available. Indeed, some of them never evolve out of the exploratory phase.
Problems at this level call for more primitive means of assigning probabilities directly out
of our incomplete information.

For this purpose, the Principle of maximum entropy has at present the clearest theoretical
justification and is the most highly developed computationally, with an analytical appara-
tus as powerful and versatile as the Bayesian one. To apply it we must define a sample
space, but do not need any model or sampling distribution. In effect, entropy maximization
creates a model for us out of our data, which proves to be optimal by so many different
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xxiv Preface

criteria3 that it is hard to imagine circumstances where one would not want to use it in a
problem where we have a sample space but no model.

Bayesian and maximum entropy methods differ in another respect. Both procedures
yield the optimal inferences from the information that went into them, but we may choose
a model for Bayesian analysis; this amounts to expressing some prior knowledge – or some
working hypothesis – about the phenomenon being observed. Usually, such hypotheses
extend beyond what is directly observable in the data, and in that sense we might say that
Bayesian methods are – or at least may be – speculative. If the extra hypotheses are true,
then we expect that the Bayesian results will improve on maximum entropy; if they are
false, the Bayesian inferences will likely be worse.

On the other hand, maximum entropy is a nonspeculative procedure, in the sense that it
invokes no hypotheses beyond the sample space and the evidence that is in the available
data. Thus it predicts only observable facts (functions of future or past observations) rather
than values of parameters which may exist only in our imagination. It is just for that reason
that maximum entropy is the appropriate (safest) tool when we have very little knowledge
beyond the raw data; it protects us against drawing conclusions not warranted by the data.
But when the information is extremely vague, it may be difficult to define any appropriate
sample space, and one may wonder whether still more primitive principles than maximum
entropy can be found. There is room for much new creative thought here.

For the present, there are many important and highly nontrivial applications where
Maximum Entropy is the only tool we need. Part 2 of this work considers them in de-
tail; usually, they require more technical knowledge of the subject-matter area than do the
more general applications studied in Part 1. All of presently known statistical mechanics,
for example, is included in this, as are the highly successful Maximum Entropy spectrum
analysis and image reconstruction algorithms in current use. However, we think that in the
future the latter two applications will evolve into the Bayesian phase, as we become more
aware of the appropriate models and hypothesis spaces which enable us to incorporate more
prior information.

We are conscious of having so many theoretical points to explain that we fail to present
as many practical worked-out numerical examples as we should. Fortunately, three recent
books largely make up this deficiency, and should be considered as adjuncts to the present
work: Bayesian Spectrum Analysis and Parameter Estimation (Bretthorst, 1988), Maximum
Entropy in Action (Buck and Macaulay, 1991), and Data Analysis – A Bayesian Tutorial
(Sivia, 1996), are written from a viewpoint essentially identical to ours and present a wealth
of real problems carried through to numerical solutions. Of course, these works do not
contain nearly as much theoretical explanation as does the present one. Also, the Proceedings

3 These concern efficient information handling; for example, (1) the model created is the simplest one that captures all the
information in the constraints (Chapter 11); (2) it is the unique model for which the constraints would have been sufficient
statistics (Chapter 8); (3) if viewed as constructing a sampling distribution for subsequent Bayesian inference from new data D,
the only property of the measurement errors in D that are used in that subsequent inference are the ones about which that sampling
distribution contained some definite prior information (Chapter 7). Thus the formalism automatically takes into account all the
information we have, but avoids assuming information that we do not have. This contrasts sharply with orthodox methods, where
one does not think in terms of information at all, and in general violates both of these desiderata.
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Preface xxv

volumes of the various annual MAXENT workshops since 1981 consider a great variety of
useful applications.

Mental activity

As one would expect already from Pólya’s examples, probability theory as extended logic
reproduces many aspects of human mental activity, sometimes in surprising and even dis-
turbing detail. In Chapter 5 we find our equations exhibiting the phenomenon of a person
who tells the truth and is not believed, even though the disbelievers are reasoning consis-
tently. The theory explains why and under what circumstances this will happen.

The equations also reproduce a more complicated phenomenon, divergence of opinions.
One might expect that open discussion of public issues would tend to bring about a general
consensus. On the contrary, we observe repeatedly that when some controversial issue has
been discussed vigorously for a few years, society becomes polarized into two opposite
extreme camps; it is almost impossible to find anyone who retains a moderate view. Prob-
ability theory as logic shows how two persons, given the same information, may have their
opinions driven in opposite directions by it, and what must be done to avoid this.

In such respects, it is clear that probability theory is telling us something about the way
our own minds operate when we form intuitive judgments, of which we may not have been
consciously aware. Some may feel uncomfortable at these revelations; others may see in
them useful tools for psychological, sociological, or legal research.

What is ‘safe’?

We are not concerned here only with abstract issues of mathematics and logic. One of
the main practical messages of this work is the great effect of prior information on the
conclusions that one should draw from a given data set. Currently, much discussed issues,
such as environmental hazards or the toxicity of a food additive, cannot be judged rationally
if one looks only at the current data and ignores the prior information that scientists have
about the phenomenon. This can lead one to overestimate or underestimate the danger.

A common error, when judging the effects of radioactivity or the toxicity of some sub-
stance, is to assume a linear response model without threshold (i.e. without a dose rate below
which there is no ill effect). Presumably there is no threshold effect for cumulative poisons
like heavy metal ions (mercury, lead), which are eliminated only very slowly, if at all. But
for virtually every organic substance (such as saccharin or cyclamates), the existence of a
finite metabolic rate means that there must exist a finite threshold dose rate, below which
the substance is decomposed, eliminated, or chemically altered so rapidly that it causes no
ill effects. If this were not true, the human race could never have survived to the present
time, in view of all the things we have been eating.

Indeed, every mouthful of food you and I have ever taken contained many billions of
kinds of complex molecules whose structure and physiological effects have never been
determined – and many millions of which would be toxic or fatal in large doses. We cannot
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xxvi Preface

doubt that we are daily ingesting thousands of substances that are far more dangerous than
saccharin – but in amounts that are safe, because they are far below the various thresholds
of toxicity. At present, there are hardly any substances, except some common drugs, for
which we actually know the threshold.

Therefore, the goal of inference in this field should be to estimate not only the slope
of the response curve, but, far more importantly, to decide whether there is evidence for
a threshold; and, if there is, to estimate its magnitude (the ‘maximum safe dose’). For
example, to tell us that a sugar substitute can produce a barely detectable incidence of
cancer in doses 1000 times greater than would ever be encountered in practice, is hardly an
argument against using the substitute; indeed, the fact that it is necessary to go to kilodoses
in order to detect any ill effects at all, is rather conclusive evidence, not of the danger, but of
the safety, of a tested substance. A similar overdose of sugar would be far more dangerous,
leading not to barely detectable harmful effects, but to sure, immediate death by diabetic
coma; yet nobody has proposed to ban the use of sugar in food.

Kilodose effects are irrelevant because we do not take kilodoses; in the case of a sugar
substitute the important question is: What are the threshold doses for toxicity of a sugar
substitute and for sugar, compared with the normal doses? If that of a sugar substitute is
higher, then the rational conclusion would be that the substitute is actually safer than sugar,
as a food ingredient. To analyze one’s data in terms of a model which does not allow even
the possibility of a threshold effect is to prejudge the issue in a way that can lead to false
conclusions, however good the data. If we hope to detect any phenomenon, we must use a
model that at least allows the possibility that it may exist.

We emphasize this in the Preface because false conclusions of just this kind are now
not only causing major economic waste, but also creating unnecessary dangers to public
health and safety. Society has only finite resources to deal with such problems, so any effort
expended on imaginary dangers means that real dangers are going unattended. Even worse,
the error is incorrectible by the currently most used data analysis procedures; a false premise
built into a model which is never questioned cannot be removed by any amount of new data.
Use of models which correctly represent the prior information that scientists have about the
mechanism at work can prevent such folly in the future.

Such considerations are not the only reasons why prior information is essential in infer-
ence; the progress of science itself is at stake. To see this, note a corollary to the preceding
paragraph: that new data that we insist on analyzing in terms of old ideas (that is, old models
which are not questioned) cannot lead us out of the old ideas. However many data we record
and analyze, we may just keep repeating the same old errors, missing the same crucially
important things that the experiment was competent to find. That is what ignoring prior in-
formation can do to us; no amount of analyzing coin tossing data by a stochastic model could
have led us to the discovery of Newtonian mechanics, which alone determines those data.

Old data, when seen in the light of new ideas, can give us an entirely new insight into
a phenomenon; we have an impressive recent example of this in the Bayesian spectrum
analysis of nuclear magnetic resonance data, which enables us to make accurate quantitative
determinations of phenomena which were not accessible to observation at all with the
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previously used data analysis by Fourier transforms. When a data set is mutilated (or, to use
the common euphemism, ‘filtered’) by processing according to false assumptions, important
information in it may be destroyed irreversibly. As some have recognized, this is happening
constantly from orthodox methods of detrending or seasonal adjustment in econometrics.
However, old data sets, if preserved unmutilated by old assumptions, may have a new lease
on life when our prior information advances.

Style of presentation

In Part 1, expounding principles and elementary applications, most chapters start with
several pages of verbal discussion of the nature of the problem. Here we try to explain
the constructive ways of looking at it, and the logical pitfalls responsible for past errors.
Only then do we turn to the mathematics, solving a few of the problems of the genre to the
point where the reader may carry it on by straightforward mathematical generalization. In
Part 2, expounding more advanced applications, we can concentrate from the start on the
mathematics.

The writer has learned from much experience that this primary emphasis on the logic of the
problem, rather than the mathematics, is necessary in the early stages. For modern students,
the mathematics is the easy part; once a problem has been reduced to a definite mathematical
exercise, most students can solve it effortlessly and extend it endlessly, without further help
from any book or teacher. It is in the conceptual matters (how to make the initial connection
between the real-world problem and the abstract mathematics) that they are perplexed and
unsure how to proceed.

Recent history demonstrates that anyone foolhardy enough to describe his own work as
‘rigorous’ is headed for a fall. Therefore, we shall claim only that we do not knowingly give
erroneous arguments. We are conscious also of writing for a large and varied audience, for
most of whom clarity of meaning is more important than ‘rigor’ in the narrow mathematical
sense.

There are two more, even stronger, reasons for placing our primary emphasis on logic
and clarity. Firstly, no argument is stronger than the premises that go into it, and, as Harold
Jeffreys noted, those who lay the greatest stress on mathematical rigor are just the ones who,
lacking a sure sense of the real world, tie their arguments to unrealistic premises and thus
destroy their relevance. Jeffreys likened this to trying to strengthen a building by anchoring
steel beams into plaster. An argument which makes it clear intuitively why a result is correct
is actually more trustworthy, and more likely of a permanent place in science, than is one
that makes a great overt show of mathematical rigor unaccompanied by understanding.

Secondly, we have to recognize that there are no really trustworthy standards of rigor in a
mathematics that has embraced the theory of infinite sets. Morris Kline (1980, p. 351) came
close to the Jeffreys simile: ‘Should one design a bridge using theory involving infinite sets
or the axiom of choice? Might not the bridge collapse?’ The only real rigor we have today
is in the operations of elementary arithmetic on finite sets of finite integers, and our own
bridge will be safest from collapse if we keep this in mind.
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Of course, it is essential that we follow this ‘finite sets’ policy whenever it matters for
our results; but we do not propose to become fanatical about it. In particular, the arts of
computation and approximation are on a different level than that of basic principle; and so
once a result is derived from strict application of the rules, we allow ourselves to use any
convenient analytical methods for evaluation or approximation (such as replacing a sum by
an integral) without feeling obliged to show how to generate an uncountable set as the limit
of a finite one.

We impose on ourselves a far stricter adherence to the mathematical rules of probabil-
ity theory than was ever exhibited in the ‘orthodox’ statistical literature, in which authors
repeatedly invoke the aforementioned intuitive ad hoc devices to do, arbitrarily and im-
perfectly, what the rules of probability theory would have done for them uniquely and
optimally. It is just this strict adherence that enables us to avoid the artificial paradoxes and
contradictions of orthodox statistics, as described in Chapters 15 and 17.

Equally important, this policy often simplifies the computations in two ways: (i) the
problem of determining the sampling distribution of a ‘statistic’ is eliminated, and the
evidence of the data is displayed fully in the likelihood function, which can be written
down immediately; and (ii) one can eliminate nuisance parameters at the beginning of a
calculation, thus reducing the dimensionality of a search algorithm. If there are several
parameters in a problem, this can mean orders of magnitude reduction in computation over
what would be needed with a least squares or maximum likelihood algorithm. The Bayesian
computer programs of Bretthorst (1988) demonstrate these advantages impressively, leading
in some cases to major improvements in the ability to extract information from data, over
previously used methods. But this has barely scratched the surface of what can be done with
sophisticated Bayesian models. We expect a great proliferation of this field in the near future.

A scientist who has learned how to use probability theory directly as extended logic
has a great advantage in power and versatility over one who has learned only a collection
of unrelated ad hoc devices. As the complexity of our problems increases, so does this
relative advantage. Therefore we think that, in the future, workers in all the quantitative
sciences will be obliged, as a matter of practical necessity, to use probability theory in the
manner expounded here. This trend is already well under way in several fields, ranging from
econometrics to astronomy to magnetic resonance spectroscopy; but, to make progress in a
new area, it is necessary to develop a healthy disrespect for tradition and authority, which
have retarded progress throughout the 20th century.

Finally, some readers should be warned not to look for hidden subtleties of meaning
which are not present. We shall, of course, explain and use all the standard technical jargon
of probability and statistics – because that is our topic. But, although our concern with the
nature of logical inference leads us to discuss many of the same issues, our language differs
greatly from the stilted jargon of logicians and philosophers. There are no linguistic tricks,
and there is no ‘meta-language’ gobbledygook; only plain English. We think that this will
convey our message clearly enough to anyone who seriously wants to understand it. In any
event, we feel sure that no further clarity would be achieved by taking the first few steps
down that infinite regress that starts with: ‘What do you mean by “exists”?’
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